#FuturoPresente: fusão nuclear – chegou a hora da “energia limpa, barata e infinita”?

O futuro da energia reside no plasma da fusão nuclear? Vamos descobrir. Fonte: Getty Images.

Você já parou para se dar conta de o quanto a sua vida está relacionada com a energia? Para ler este artigo, por exemplo, você acessou um smartphone, smart tv ou computador que é alimentado eletricamente. Além disso, só pôde acionar o equipamento porque seu corpo, do cérebro às pontas dos dedos, possui energia suficiente para isto. Em outras palavras: você e o mundo são movidos pela energia… e são totalmente dependentes dela!

Energia: transformação, troca, custo

Acontece, porém, que não há energia de graça. Sendo mais precisos, podemos dizer que toda energia implica uma transformação, uma troca, um custo. Um processo que normalmente gera resíduos, do dióxido de carbono emitido pelo automóvel à casca que sobra de uma banana comida em nome do sabor e da força necessária para seguir trabalhando ou estudando.

Essa, aliás, é uma das grandes questões do nosso tempo: nos últimos três séculos, desde o início da Revolução Industrial, produzimos quantidades enormes de energia, com um custo que se faz cada vez mais visível em termos ambientais. E hoje, no ano de 2025, cerca de 80% da energia primária consumida no planeta vêm de fontes fósseis (petróleo, carvão e gás), que deixam pegadas muito pesadas na natureza – elas respondem por 75% das emissões de CO2 no planeta!

A busca pelo Graal da energia

Chegamos, então, a um dos grandes desafios da ciência: o de acessar fontes de energia baratas, abundantes e limpas (ou mais limpas que as disponíveis). Será que a fusão nuclear é a resposta? Nesta edição de #FuturoPresente, exploramos essa promessa que pode saltar dos laboratórios para a realidade em breve – e revolucionar nossa relação com o planeta.

Quebrar átomos, fundir átomos: a jornada para dominar a energia nuclear

Como a humanidade chegou a dominar a energia contida nos átomos? Esta história começa muito antes dos laboratórios modernos – na verdade, ela nasce da curiosidade filosófica. Imagine um pensador antigo se perguntando: “Se eu partir esta pedra em pedaços cada vez menores, em que momento ela deixará de ser pedra?”.

Esta “imaginação atômica” – a concepção de que toda matéria é composta por partículas minúsculas – remonta a 2.500 anos no passado, desenvolvida simultaneamente por filósofos gregos como Demócrito e por pensadores indianos. Porém, foi somente no início do século XX que essas especulações – fortemente desenvolvidas a partir do século XVIII – ganharam forma concreta, quando cientistas finalmente demonstraram como manipular os próprios blocos fundamentais da matéria.

Estátua de Demócrito encontrada em Herculano, Itália. Fonte: Wikipedia.

Foi nesse contexto revolucionário que passamos a compreender mais plenamente a relação íntima entre matéria e energia – e como explorá-la. Dois caminhos distintos emergiram:

Fissão Nuclear: Descoberta acidentalmente em 1938 por Otto Hahn, Fritz Strassmann e Lise Meitner, ocorre quando o núcleo de átomos pesados (como urânio ou plutônio) se divide após absorver um nêutron, liberando energia imensa e nêutrons adicionais que perpetuam a reação.

Otto Hahn, Fritz Strassmann e Lise Meitner, os mestres da fissão nuclear.
Fonte: Wikipedia

Fusão Nuclear: Explicada por Hans Bethe em 1939, é o processo que alimenta as estrelas – átomos leves de hidrogênio se fundem sob calor e pressão extremos, formando átomos de hélio e liberando quantidades colossais de energia, sem subprodutos radioativos significativos.

Hans Bethe, prêmio Nobel de 1967. Fonte: Wikipedia.

Fissão nuclear: vantagens e riscos

Testada empiricamente da forma mais dramática – com o Projeto Manhattan, que produziu as bombas nucleares lançadas sobre o Japão –, a fissão nuclear entrou na matriz energética de muitos países a partir da segunda metade do século XX. Em 2024, segundo dados da Agência Internacional de Energia Atômica (AIEA), havia 412 reatores nucleares em 32 países.

Se, por um lado, a fissão é uma fonte interessante – o parque nuclear atual implica uma redução de 2 bilhões de toneladas por ano de CO2 na atmosfera, a mesma quantidade produzida por uma frota de 400 milhões de automóveis –, por outro provoca grandes preocupações por gerar resíduos radioativos de alta atividade, que permanecem perigosos por milênios.

Além dos resíduos, acidentes como os registrados em Chernobyl (1986) e Fukushima (2011) deixaram um legado trágico e ilustraram poderosamente a discussão sobre os riscos humanos e ambientais ligados à fissão nuclear. Há vantagens inquestionáveis… e riscos associados também!

Técnico da Agência Atômica Internacional examina área próxima ao acidente nuclear do reator de Fukushima. Fonte: Wikipedia.

Apesar desses riscos, a energia nuclear causa menos mortes por TWh (Tera Watt-hora) gerado que fontes não radioativas como o carvão. Além disso, a próxima geração de reatores nucleares, os chamados SMRs, promete tornar essa energia ainda mais segura e limpa.

Agora, e se essa fonte energética, também baseada nos átomos, não gerar resíduos radioativos? E se ela tomar como referência, como matéria-prima, o elemento mais comum em todo o universo, o Hidrogênio?

Chegamos ao sonho da fusão nuclear, que, como alertou Hans Bethe, nos é demonstrada diariamente. Onde? No sol!

O “Graal” da fusão

Leia estes números e reflita: 1 kg de urânio fissionado em um reator nuclear ao longo de certo período de tempo libera energia equivalente à queima de 3 milhões de quilos de carvão. Nossa, isso é sensacional! Ao mesmo tempo, 1 kg de hidrogênio (deutério-trítio) fusionado é capaz – ao menos, em teoria – de gerar quatro vezes mais energia, o equivalente à queima de 12 milhões de quilos de carvão (uma pilha do tamanho do Pão de Açúcar!). E por um preço sensivelmente menor. Muito melhor!

Sim! Não fosse por um único detalhe: até o momento, a fusão nuclear ainda não “decolou”, e o investimento energético necessário para a produção de energia é maior que a energia gerada. Em outras palavras: a conta “ainda não fecha”.

Mas, estudos e projetos em andamento afirmam que, em algum tempo, teremos progressos importantes. E mais: focando no chamado “hidrogênio verde”, seria possível eliminar as emissões de CO2. É o que vamos saber na sequência.

Usina Termoelétrica a carvão do tipo “brown coal”, o mais poluente dos carvões minerais. Fonte: Getty Images.

Para a conta fechar… e gerar lucros

Os cientistas sabem muito sobre a fusão nuclear. No entanto, apenas agora eles estão começando a dar os primeiros passos mais firmes no sentido de gerar energia por meio da fusão.

Mas, qual é a maior dificuldade? Imagine, para começar, que para a fusão é preciso reproduzir o que acontece no núcleo do Sol. Em termos mais poéticos, os cientistas devem ser capazes de “criar um pequeno sol” e controlá-lo. Mas, como eles fazem isso?

A principal tecnologia atual é a dos chamados “tokamaks”, super-reatores em forma de anel, dotados de imãs gigantes para “domar” o plasma gerado na operação. No interior dos reatores, gases como o hidrogênio (na forma de tritônio – H3) são aquecidos a milhões de graus Celsius e se tornam plasma. Com a pressão e o calor monumentais – dignos do núcleo do Sol – os núcleos dos átomos do gás se fundem, liberando energia.

Representação artística de um tokamak. A parte brilhante, interna, representa o plasma circulando dentro do anel de imãs. Fonte: Getty Images.

O caminho está dado, mas há desafios poderosos. O primeiro é o da temperatura necessária para a fusão, de milhões de graus Celsius (maior que a temperatura do núcleo solar, que é de 15 milhões de graus Celsius). Em todos os testes feitos até agora, essa temperatura e a energia investida para alcançá-la têm sido maiores do que as geradas pelo processo de fusão, o que inviabiliza a operação.

O segundo desafio, ligado ao primeiro, se refere ao controle do plasma dentro dos tokamaks. O plasma, considerado o quarto estado da matéria, é formado quando um gás é aquecido a temperaturas muito altas ou submetido a fortes descargas elétricas, fazendo com que os átomos percam elétrons e se tornem íons. Sem controle, o plasma envolvido no processo pode fazer a reação perder temperatura, inviabilizando o ganho de energia na fusão e danificando equipamentos que são caríssimos.

Afinal, a fusão nuclear é um “beco sem saída”?

Não! Apesar das dificuldades monumentais – até agora, nenhum dos experimentos de geração de plasma produziu mais energia do que consumiu –, os cientistas acreditam que, até 2035, esteja em funcionamento o primeiro reator de fusão nuclear realmente eficiente.

Estamos falando do ITER (sigla em inglês para Reator Termonuclear Experimental Internacional), em construção no sul da França, que promete gerar dez vezes mais energia do que consome.

É um projeto internacional que envolve a participação de 35 países – os 27 membros da União Europeia, Reino Unido, Suíça, China, Índia, Rússia, Coreia do Sul, Japão e Estados Unidos – e que tem um custo de US$ 40 bilhões. O Brasil não é parceiro do projeto, mas participa indiretamente por meio de pesquisadores associados de áreas como as de Física e materiais.

Planta do ITER em Cadarache, no sul da França, na região da Provença-Alpes-Costa Azul. © ITER Organization, 2023. Fonte: iter.org

Mas, o que o ITER tem de diferente?

Para começar, o raio do reator, que é de 6,2 metros – duas vezes o tamanho do maior tokamak atual, o Jet, localizado na Inglaterra. Ele também é capaz de gerar uma temperatura de 150 milhões de graus Celsius – dez vezes maior que a temperatura do sol.

A meta do ITER é produzir 500 MW de energia de fusão com uma carga de acionamento de apenas 50 MW – um ganho de 10x. Para chegar lá, os pesquisadores estão utilizando novas tecnologias, como a de imãs supercondutores de nióbio-estanho resfriados a -269°C que são extremamente poderosos. Além disso, vão utilizar uma tecnologia diferenciada – a dos chamados “divertores de tungstênio” para extrair calor e impurezas do plasma. E também querem fazer com que o tritônio seja produzido dentro do próprio reator a partir de átomos de lítio.

Vista do interior do tokamak do ITER. © ITER Organization, 2023. Fonte: iter.org

O resultado? Muita energia – capaz de alimentar redes elétricas –, de baixo custo e com uma pegada ambiental muito pequena (e riscos associados baixíssimos), capaz de saldar os investimentos no projeto em muito pouco tempo. E, é claro, iniciar – literalmente – uma nova era na civilização!

Para ir mais longe – links:

Portal oficial do Projeto ITER (em inglês e francês)

Fusão Nuclear – Departamento de Física Nuclear do Instituto de Física da USP

G1, Fusão x fissão nuclear: reações produzem energia de formas diferentes; veja glossário do tema

BBC Brasil – Fusão nuclear: como cientistas alcançaram “Santo Graal” da energia limpa